

ОАО «ГМС Насосы» 303851 Россия, Орловская область,

г. Ливны, ул. Мира, 231

тел.: +7(48677) 7-12-00, 7-69-54, 7-12-40 факс: +7(48677) 7-12-48, 7-33-49, 7-28-92

e-mail: info@hms-pumps.ru www.hms-pumps.ru www.hms.ru

Станция управления и защиты HMS CONTROL ST-XXX-X-КЧ Протокол управления станцией HMS CONTROL ST-XXX-X-КЧ по последовательной линии связи RS485

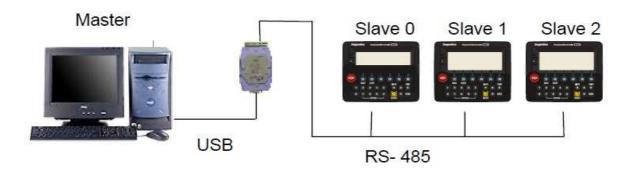
MODBUS RTU (Версия 1.0)

Оглавление

BBI	ЕДЕНИЕ	3
1.	ОПИСАНИЕ ИНТЕРФЕЙСА	4
2.	СХЕМА ПОДКЛЮЧЕНИЯ	4
3.	ФОРМАТ СООБЩЕНИЙ	4
4.	ОПИСАНИЕ РЕГИСТРОВ	5
5.	ПРИЛОЖЕНИЕ 1	9

Введение

Данное руководство содержит сведения, необходимые для программирования функций управления, контроля состояния, чтения и записи констант станций HMS CONTROL ST-XXX-X-KЧ (далее по тексту станция) от управляющего контроллера (PLC) или компьютера (PC) по последовательной линии связи RS-485 с использованием протокола MODBUS.


В Руководстве приведены:

- описание интерфейса;
- схема подключения;
- формат сообщений;
- описание регистров;
- алгоритм вычисления контрольной суммы CRC-16.

1. Описание интерфейса

Станция имеет последовательный интерфейс RS-485. Интерфейс RS-485 позволяет объединить в сеть до 255 устройств на линии длиной до 1200 м. Контроллер станции является ведомым (slave) устройством, отвечающим на команды с соответствующим адресом в пакете протокола. По последовательному интерфейсу поддерживается протокол верхнего уровня Modbus с форматом пакета RTU в полном соответствии с документом «Modbus over Serial Line Specification & Implementation guide V1.0». Поддерживаются скорости передачи от 2400 бит/с до 115 Кбит/с, без контроля четности, 8 бит данных, 1 стоп-бит. Физический интерфейс, скорость соединения и сетевой адрес задаются в сервисном меню контроллера (сочетание клавиш 7 and 0).

2. Схема подключения

3. Формат сообщений

Формат сообщений

Адрес Станции	
Код операции	
Данные	
Контрольная сумма	

Поле адреса содержит 8 бит. Допустимый адрес передачи находится в диапазоне 0 - 25. Каждой станции присваивается адрес в пределах от 1 до 255. Каждая из подключенных станций должна иметь уникальный, не повторяющийся в данной сети.

ПЛК станции поддерживает следующие коды операций:

- 01h
- 02h Чтение дискретных входов (Read Discrete Input)
- **03h** Чтение регистров (Read Holding Registers)
- **04h** Чтение входных регистров (Read Input Register)
- 05h
- **06h** Запись регистра (Write Single Register)
- 15h
- 16h Запись нескольких регистров (Write Multiple Registers)

Поле данных содержит дополнительную информацию, которая необходима для выполнения указанной функции. Оно может содержать адреса регистров, их количество, счетчик передаваемых байтов данных.

Контрольная сумма вычисляется по алгоритму CRC-16, приведенному в Приложении 1.

4. Описание регистров

4.1 Регистры задания параметров объекта (Holding Register).

Запись в регистры производится командой 16 (Write Multiple Registers)

Запрос:

Данное сообщение меняет содержимое любого регистра опрашиваемого контроллера.

Сообщение позволяет записывать регистры с максимальным логическим адресом до FFFFH.

Неиспользуемые старшие биты адреса регистра должны заполняться нулями. Если используется адрес SL равный 0, то содержимое поля данных записывается во все устройства, подключенные к шине (широковещательный режим).

Ответ.

Нормальное ответное сообщение возвращает адрес SL, функцию, адрес первого регистра и количество записанных регистров.

		Тип	Описание		
Адрес	Описание функции	перемен ной	Диапа- зон	Точность определения	Значение
41984	Верхний ток,мА	float	0-100	1мА	
41986	Нижний ток,мА	float	0-100	1мА	
41988	Верхнее давление,бар	float	0-100	1Бар	
41990	Нижнее давление, бар	float	0-100	1Бар	
41992	Давление, бар	float	0-100	0.1Бар	
41994	Пропорциональный коэф.	float	1-1000	0.1	
41996	Интегральный коэф.	float	1-1000	0.1	
41998	Дифференциальный коэф.	float	1-1000	0.1	
42000	Верхнее значение частоты, Гц	float	1-50	0.1Гц	

42002	Нижнее значение	float	1-50	0.1Гц	
42002	частоты,Гц	110at	1-30	0.11 ц	
42004	Нижний предел давления,%	float	0-100	0.1%	
42006	Верхний предел давления,%	float	70-300	0.1%	
42008	Сброс наработки насоса №1	int	0-1		
42009	Сброс наработки насоса №2	int	0-1		0-Подсчёт;
42029	Сброс наработки насоса №3	int	0-1		1-Сброс
42028	Сброс наработки насоса №4	int	0-1		
42010	Задержка включения насоса №1	float	0-100	0.1c	
42012	Задержка выключения насоса №1	float	0-100	0.1c	
42014	Задержка включения насоса №2	float	0-100	0.1c	
42016	Задержка выключения насоса №2	float	0-100	0.1c	
42034	Задержка включения насоса №3	float	0-100	0.1c	
42036	Задержка выключения насоса №3	float	0-100	0.1c	
42038	Задержка включения насоса №4	float	0-100	0.1c	
42040	Задержка выключения насоса №4	float	0-100	0.1c	
42018	Смена насоса мастера. Час	int	0-24	1ч	
42019	Смена насоса мастера. Дней	int	0-31	1день	
42020	Смена насоса мастера. Месяцев	int	0-12	1 месяц	
42021	Задание состояния насоса №1	int	0-1		
42022	Задание состояния насоса №2	int	0-1		0-Рабочий;
42033	Задание состояния насоса №3	int	0-1		1-В ремонте
42032	Задание состояния насоса №4	int	0-1		
42023	Значение тока защиты,%	float	90-200	0.1%	
42025	Номинальный ток электродвигателя, A	float	0-1000	0.1A	
42027	Число одновременно работающих насосов	int	0-4		

42030	Резерв1	int		
42031	Резерв2	int		
42042	Резерв3	float		
42044	Резерв4	float		
42046	Резерв5	float		
42048	Резерв6	float		
42050	Резерв7	float		
42052	Сигнал авария	int	0-1	0-авария; 1-работа
42053	Разрешающий сигнал на пуск	int	0-1	0-разрешить 1-запретить
42054	Сброс ошибок	int	0-1	0-нет 1-Сброс

4.2 Регистры чтения параметров объекта (Input Register).

Чтение дискретных входов производиться командой **02** (**Read Discrete Input**) **Запрос.**

Данная функция позволяет пользователю получить состояние(ВКЛ/ВЫКЛ) входных

дискретных линий адресуемого SL. Широковещательный запрос не поддерживается. В дополнение к адресу SL и номеру функции, запрос требует, чтобы информационное поле содержало начальный адрес и количество требуемых линий.

Адресация позволяет получить за один запрос до 2000 линий. Однако, некоторые устройства имеют ограничение на максимальное количество линий, получаемых за один запрос. Входные линии нумеруются с нуля (10001 = 0, 10002 = 1 и т.д.).

Ответ.

Ответное сообщение включает адрес SL, код функции, количество байт данных, данные и поле контрольной суммы. Данные упакованы по биту на каждый вход (1 = ON, 0 = OFF). Младший бит первого байта содержит значение первого адресуемого входа, за которым следуют остальные. Если количество запрошенных входов не кратно 8, то остальные биты заполняются нулями. Количество байт данных всегда определяется как количество RTU данных.

Так как SL обслуживает запрос в конце рабочего цикла, данные в ответе отражаютсостояние входов на данный момент. Некоторые устройства имеют ограничение намаксимальное количество входов, запрашиваемых за один запрос.

Чтение регистров производится командой 04 (Read Input Register).

Данная функция позволяет получить двоичное содержимое 16-ти разрядных регистров адресуемого контроллера. Адресация позволяет получить за каждый запрос до 125 регистров. Регистры нумеруются с нуля.

Широковещательный режим не допускается.

Адресуемый контроллер посылает в ответе свой адрес, код выполненной функции и информационное поле. Информационное поле содержит 2 байта, описывающих количество возвращаемых байт данных. Длина каждого регистра данных – 2 байта. Первый байт данных в посылке является старшим байтом регистра, второй – млалшим.

С адреса 012Ah находится журнал ошибок станции. Количество записей -20 (20*18=360 регистров, 720 байт данных).

Запись содержит поля: код ошибки, дата, месяц, год, час, мин, значения токов, напряжений и температуры на момент аварии и время сброса ошибки (нули, если ошибка еще не сброшена). Записи располагаются в хронологическом порядке, начиная с последней по времени ошибки. При возникновении очередной ошибки происходит сдвиг вниз на одну запись. Последняя ошибка всегда находится в первой записи.

		Тип	Описание			
Адрес	Описание функции	перемен ной	Диапа- зон	Точность определения	Значение	
14336	Режим работы	bool			1-автомати- ческий; 0-ручной.	
40960	Потребляемый ток, А	float	0-1000	0.1A		
40962	Напряжение питания, В	float	0-500	0.1B		
40964	Текущее давление, бар	float	0-30	0.1бар		
40966	Давление уставки, бар	float	0-30	0.1бар		
40968	Наработка насоса №1	long	0- 99999	1 час		
40970	Наработка насоса №2	long	0- 99999	1 час		
40977	Наработка насоса №3	long	0- 99999	1 час		
40975	Наработка насоса №4	long	0- 99999	1 час		
40972	Состояние насоса №1	int	0-1		0-рабочий; 1-в ремонте	

40973	Состояние насоса №2	int	0-1		0-рабочий;
					1-в ремонте 0-рабочий;
40979	Состояние насоса №3	int	0-1		0-раоочии; 1-в ремонте
					0-рабочий;
40980	Состояние насоса №4	int	0-1		_
40974	Аварии	int	ыt0: 1-Авария датчика давления ыt1: 1-Аварийный стоп ыt2: 1-Нет воды на входе ыt3: 1-Авария насоса №1 ыt4: 1- Авария насоса №2 ыt5: 1- Авария насоса №3 ыt6: 1- Авария насоса №4 ыt7: 1-Авария п.Ч. ыt8: 1-Авария всех насосов ыt9: 1-Порыв трубопровода ыt10: 1-Резерв ыt11: 1-Резерв ыt12: 1-Резерв ыt13: 1-Резерв ыt14: 1-Резерв ыt15: 1-Резерв ыt15: 1-Резерв		
40981	Резерв 1	int			
40982	Резерв 2	int			
40983	Резерв 3	int			
40984	Резерв 4	int			
40985	Резерв 4	long			
40987	Резерв 4	long			
40989	Резерв 4	long			
40991	Резерв 4	long			

5. Приложение 1.

Алгоритм вычисления контрольной суммы CRC-16.

Сообщение (только биты данных, без учета старт/стоповых бит и бит четности) рассматриваются как одно последовательное двоичное число, у которого старший значащий бит (MSB) передается первым. Сообщение умножается на X^{16} (сдвигается влево на 16 бит), а затем делится на $X^{16} + X^{15} + X^2 + 1$, выражаемое как двоичное число (1100000000000101). Целая часть результата игнорируется, а 16-ти битный остаток (предварительно инициализированный единицами для предотвращения случая, когда все сообщение состоит из нулей) добавляется к сообщению (старшим битом вперед) как

два байта контрольной суммы. Полученное сообщение, включающее CRC, затем в приемнике делится на тот же полином ($X^{16}+X^{15}+X^2+1$). Если ошибок не было, остаток от деления должен получится нулевым.(Приемное устройство может рассчитать CRC и сравнить ее с переданной). Вся арифметика выполняется по модулю 2 (без переноса).

Устройство, используемое для подготовки данных для передачи, посылает условно самый правый (LSB) бит каждого символа первым. При расчете CRC, первый передаваемый бит, определен как MSB делимого. Так как арифметика не использует перенос, для удобства расчета CRC можно предположить, что MSB расположен справа. Поэтому порядок бит при расчете полинома должен быть реверсивным. MSB полинома опускается, так как он влияет только на делитель, а не на остаток. В результате получается 1010 0000 0000 0001 (A001h). Заметьте, что эта реверсивность порядка бит, в любом случае, не влияет на интерпретацию или порядок бит байт данных при вычислении CRC.

Пошаговая процедура расчета CRC-16 представлена ниже:

- 1. Загрузить 16-ти разрядный регистр числом FFFFh.
- 2. Выполнить операцию XOR над первым байтом данных и старшим байтом регистра. Поместить результат в регистр.
 - 3. Сдвинуть регистр на один разряд вправо.
- 4. Если выдвинутый вправо бит единица, выполнить операцию XOR между регистром и полиномом 1010 0000 0000 0001 (A001h).
 - 5. Если выдвинутый бит ноль, вернуться в шагу 3.
- 6. Повторять шаги 3 и 4 до тех пор, пока не будут выполнены 8 сдвигов регистра.
 - 7. Выполнить операцию XOR над следующим байтом данных и регистром.
- 8. Повторять шаги 3-7 до тех пор, пока не будут выполнена операция XOR над всеми байтами данных и регистром.
- 9. Содержимое регистра представляет собой два байта CRC и добавляется к исходному сообщению старшим битом вперед.

Пример расчета CRC для сообщения - чтение состояния ПЧ с номером 02:

16-ти разрядный ре	MSB	Флаг			
Исключающее	1111	1111	1111	1111	
ИЛИ					
02			0000	0010	
	1111	1111	1111	1101	
Сдвиг 1	0111	1111	1111	1110	1
Полином	1010	0000	0000	0001	
	1101	1111	1111	1111	
Сдвиг 2	0110	1111	1111	1111	1
Полином	1010	0000	0000	0001	
	1100	1111	1111	1110	
Сдвиг 3	0110	0111	1111	1111	

16-ти разрядный ре	егистр			MSB		Флаг	
Сдвиг 4	0011	0011	1111	1111		1	
Полином	1010	0000	0000	0001			
	1001	0011	1111	1110			
Сдвиг 5	0100	1001	1111	1111			
Сдвиг 6	0010	0100	1111	1111		1	
Полином	1010	0000	0000	0001			
	1000	0100	1111	1110			
Сдвиг 7	0100	0010	0111	1111			
Сдвиг 8	0010	0001	0011	1111		1	
Полином	1010	0000	0000	0001			
	1000	0001	0011	1110			
07			0000	0111			
	1000	0001	0011	1001			
Сдвиг 1	0100	0000	1001	1100		1	
Полином	1010	0000	0000	0001			
	1110	0000	1001	1101			
Сдвиг 2	0111	0000	0100	1110		1	
Полином	1010	0000	0000	0001			
	1101	0000	0100	1111			
Сдвиг 3	0110	1000	0010	0111		1	
Полином	1010	0000	0000	0001			
	1100	1000	0010	0110			
Сдвиг 4	0110	0100	0001	0011			
Сдвиг 5	0011	0010	0000	1001		1	
Полином	1010	0000	0000	0001			
	1001	0010	0000	1000			
Сдвиг 6	0100	1001	0000	0100			
Сдвиг 7	0010	0100	1000	0010			
Сдвиг 8	0001	0010	0100	0001			
	HEX 12		HEX 41				
Передаваемое сооб	щение с конт	грольной	суммой CRC	C-16			
(При передаче сообщение выдвигается вправо)							
12	2 41 07 02						
0001 0010	0100 0001 0000 0111 000					0010	
Последний бит	Порядок по	ередачи			Первы	ый бит	